Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A polymorph of K₄Ge₄Se₁₀

Amitava Choudhury, Sabine Strobel and Peter K. Dorhout*

Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA Correspondence e-mail: pkd@lamar.colostate.edu

Received 23 April 2007; accepted 11 May 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (e–Ge) = 0.001 Å; R factor = 0.041; wR factor = 0.103; data-to-parameter ratio = 29.4.

A new monoclinic polymorph, β -K₄Ge₄Se₁₀ (tetrapotassium decaselenidotetragermanate), that crystallizes in space group $P2_1/c$ has been isolated. The structure contains isolated supertetrahedral adamantane $[Ge_4Se_{10}]^{4-}$ clusters identical to those in the known $K_4Ge_4Se_{10}$ polymorph ($P2_1/m$), held together in in the crystal structure by ionic interaction with the K⁺ ions. The adamantane unit, $[Ge_4Se_{10}]^{4-}$, is formed by cornersharing of four GeSe₄ tetrahedra, with average Ge-Se distances of 2.378 and 2.281 Å for (Ge-Se)endo and (Ge-Se)_{exo}, respectively. There are four crystallographically distinct K⁺ ions in β -K₄Ge₄Se₁₀ having coordination numbers of 5, 7 and 8 (\times 2), with K-Se distances in the range 2.986 (2)-3.888 (1) Å, while the coordination numbers of the three unique K⁺ ions in the known K₄Ge₄Se₁₀ ($P2_1/m$) vary between 5 and 7. Besides the differences in coordination numbers of K⁺ ions, the two polymorphs also exhibit a different packing of the adamantane units.

Related literature

For the first polymorph $(P2_1/m)$ of this composition, see: Eisenmann & Hansa (1993); for preparation, see: Wachhold & Kanatzidis (2000); Wachhold *et al.* (2000).

Experimental

Crystal data

b = 9.7047 (8) Å
c = 23.184 (2) Å
$\beta = 94.508 \ (2)^{\circ}$
V = 2238.4 (3) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 22.31 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area detector	19344 measured reflections
diffractometer	4823 independent reflections
Absorption correction: multi-scan	3896 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.069$
$T_{\min} = 0.054, \ T_{\max} = 0.262$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.042 & 164 \text{ parameters} \\ wR(F^2) &= 0.103 & \Delta\rho_{\text{max}} &= 1.72 \text{ e } \text{ Å}^{-3} \\ S &= 1.04 & \Delta\rho_{\text{min}} &= -1.47 \text{ e } \text{ Å}^{-3} \\ 4823 \text{ reflections} & \end{split}$$

Table 1 Selected bond lengths (Å).

Ge1–Se7 ⁱ	2.2492 (10)	Ge3-Se9	2.1288 (9)
Ge1-Se3	2.3105 (10)	Ge3–Se5 ⁱⁱ	2.3795 (10)
Ge1–Se8 ⁱⁱ	2.3583 (10)	Ge3-Se7	2.4092 (10)
Ge1–Se2 ⁱ	2.4943 (11)	Ge3-Se1	2.5131 (10)
Ge2-Se5	2.2366 (9)	Ge4-Se1	2.2335 (9)
Ge2-Se4	2.2613 (9)	Ge4-Se6 ⁱⁱ	2.3735 (9)
Ge2–Se8 ⁱⁱⁱ	2.3769 (10)	Ge4-Se2	2.3755 (10)
Ge2-Se6	2.5384 (10)	Ge4-Se10	2.4238 (10)

Symmetry codes: (i) x - 1, y, z; (ii) x, y + 1, z; (iii) x + 1, y, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *SHELXL97*.

The authors wish to acknowledge financial support provided by the National Science Foundation, NSF-DMR-0343412.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2110).

References

Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2000). SMART and SAINT. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Eisenmann, B. & Hansa, J. (1993). Z. Kristallogr. 206, 101-102.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.
- Wachhold, M. & Kanatzidis, M. G. (2000). Chem. Mater. 12, 2914–2923.
- Wachhold, M., Kasthuri Rangan, K., Lei, M., Thorpe, M. F., Billinge, S. J. L., Petkov, V., Heising, J. & Kanatzidis, M. G. (2000). J. Solid State Chem. 151, 21–36.

T = 100 (2) K $0.26 \times 0.12 \times 0.06 \text{ mm}$

Acta Cryst. (2007). E63, i155 [doi:10.1107/S1600536807023264]

A polymorph of K₄Ge₄Se₁₀

A. Choudhury, S. Strobel and P. K. Dorhout

Comment

The structure determination of $K_4Ge_4Se_{10}$ was first carried out by Eisenmann and Hansa (1993). The compound was synthesized by stoichiometric combination of elements in an evacuated graphitized silica ampoule at 1073 K. It crystallizes in space group $P2_1/m$ with cell parameters a = 10.202 (6) Å, b = 11.544 (6) Å, c = 9.806 (6) Å, β = 90.6 (1)°, V = 1154.8 Å³. Wachhold & Kanatzidis (2000) reported the synthesis of $K_4Ge_4Se_{10}$ starting with K_2Se , Ge and Se, following the same route by which we have synthesized $K_4Ge_4Se_{10}$ and determined its crystal structure at 100 K, which reveals that the cell parameters are different from those reported by Eisenmann and Hansa (1993). The present β -structure crystallizes in the monoclinic system but with a different space group ($P2_1/c$); although there is an obvious metric relationship between the unit cells of the two structures, their symmetries do not allow to transform one structure into another.

Complementary views of the two polymorphs are given in Fig. 1. The structure of β -K₄Ge₄Se₁₀ contains isolated adamantane-like $[Ge_4Se_{10}]^{4-}$ units formed by four corner-shared GeSe₄ tetrahedra similar to K₄Ge₄Se₁₀—*P*2₁/*m*. However, these units are arranged differently in the two polymorphs. In both the structures, anionic adamantane units are stacked one over the other along the c- and *b* axis for K₄Ge₄Se₁₀—*P*2₁/*m* and β -K₄Ge₄Se₁₀, respectively, held together by K⁺ cations to form a column. Such columns are placed side by side in a layer like arrangement parallel to the *ac*- and *ab*-plane, for K₄Ge₄Se₁₀—*P*2₁/*m* and β -K₄Ge₄Se₁₀, respectively. In K₄Ge₄Se₁₀—*P*2₁/*m* the adamantane units are arranged such that [Ge₄Se₁₀]⁴⁻ super tetrahedra are face up in one layer while they are placed face down in the next layer, which means the Se atoms are arranged in opposite directions in alternate layer. However, in the new polymorph, β -K₄Ge₄Se₁₀, the directions of the super tetrahedra (arrangement of Se atoms) alternate in every two layers (Fig. 1). Thus in β -K₄Ge₄Se₁₀ the *c* axis is approximately doubled the length of the *b* axis in K₄Ge₄Se₁₀—*P*2₁/*m*. The average Ge—Se distances (*d*(Ge—Se)_{endo} = 2.378, d(Ge—Se)_{exo} = 2.281 Å; Table 1) and the coordination number of the K⁺ ions (CN = 5–8) of β -K₄Ge₄Se₁₀ are comparable to that of K₄Ge₄Se₁₀—*P*2₁/*m*.

Experimental

The synthesis of β -K₄Ge₄Se₁₀ was carried out according to the reported procedure (Wachhold and Kanatzidis, 2000) but with a longer heating time, 48 hrs compared to 32 hrs. Orange needles of K₄Ge₄Se₁₀ were obtained from a solid-state reaction of K₂Se, Ge, and Se by mixing stoichiometric amounts (1:2:4) of 471.46 mg K₂Se (prepared following the reported procedure, Wachhold and Kanatzidis, 2000), 435.6 mg Ge (Cerac, 99.999%), and 947.5 mg of Se (Aldrich, 99.5%). The reactants were loaded into a fused-silica tube under N₂ atmosphere in a glovebox. The tube was torch-sealed under vacuum and then placed in a furnace. The sample was heated to 1123 K at a rate of 35 K/h, held at 1123 k for 48 h, and then cooled to room temperature at a cooling rate of 35 K/h. The tube was opened under N₂, the product was ground and powder X-ray diffraction (PXRD) was carried out. The PXRD did not match with the simulated pattern from the atomic coordinates

of known K₄Ge₄Se₁₀ ($P2_1/m$) (Eisenmann and Hansa, 1993). This led us to believe that the current product could be a polymorphic modification and subsequent single-crystal X-ray data revealed different cell parameters and structure solution indicated a new polymorph of K₄Ge₄Se₁₀ (in $P2_1/c$ space group, β -phase). The experimental PXRD was in good agreement with the simulated pattern of β -K₄Ge₄Se₁₀. The finely ground product was air sensitive and decomposed after 20–30 minutes of exposure in air. The single-crystal X-ray data was collected at low temperature (100 K) under a flow of liquid N₂ and the crystal did not show any sign of decomposition during the period of data collection. Although β -K₄Ge₄Se₁₀ was obtained following the reported synthesis procedure (Wachhold and Kanatzidis, 2000; Wachhold *et al.*, 2000), however, they did not report a detailed crystallographic characterization of their K₄Ge₄Se₁₀ and hence it is unclear whether they also obtained the same polymorph as reported here.

Refinement

The highest peak and the deepest hole in the final Fourier map are 0.96 Å from Ge4 and 2.16 Å from Se10, respectively.

Figures

Fig. 1. Ball and stick representation of the packing of adamantane units in the two polymorphs: $K_4Ge_4Se_{10}$ — $P2_1/m$ (left), β - $K_4Ge_4Se_{10}$ (right).

tetrapotassium decaselenidotetragermanate

Crystal data	
K ₄ Ge ₄ Se ₁₀	$F_{000} = 2176$
$M_r = 1236.36$	$D_{\rm x} = 3.669 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5478 reflections
a = 9.9796 (8) Å	$\theta = 2.3 - 28.3^{\circ}$
<i>b</i> = 9.7047 (8) Å	$\mu = 22.31 \text{ mm}^{-1}$
c = 23.184 (2) Å	T = 100 (2) K
$\beta = 94.508 \ (2)^{\circ}$	Irregular, orange
V = 2238.4 (3) Å ³	$0.26 \times 0.12 \times 0.06 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD area detector diffractometer	4823 independent reflections
Radiation source: fine-focus sealed tube	3896 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.069$
T = 100(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$

(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.054, \ T_{\max} = 0.262$	$k = -12 \rightarrow 12$
19344 measured reflections	$l = -29 \rightarrow 29$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0511P)^2 + 6.4498P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.042$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.103$	$\Delta \rho_{\text{max}} = 1.72 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.04	$\Delta \rho_{\rm min} = -1.47 \ e \ {\rm \AA}^{-3}$
4823 reflections	Extinction correction: SHELXL97, Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(20)] ^{-1/4}
164 parameters	Extinction coefficient: 0.00274 (12)

164 parameters

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ge1	0.05608 (7)	0.77088 (7)	0.37483 (3)	0.01313 (18)
Ge2	0.84125 (7)	0.08752 (7)	0.37930 (3)	0.01123 (17)
Ge3	0.72783 (7)	0.75584 (7)	0.30709 (3)	0.01103 (17)
Ge4	0.73792 (7)	0.77065 (7)	0.47074 (3)	0.01166 (17)
Se1	0.61852 (7)	0.67644 (7)	0.39529 (3)	0.01264 (16)
Se2	0.96086 (7)	0.68890 (7)	0.46503 (3)	0.01607 (18)
Se3	0.27457 (7)	0.70088 (7)	0.36540 (3)	0.01702 (18)
Se4	0.83817 (7)	0.32038 (7)	0.37588 (3)	0.01580 (18)
Se5	0.71983 (7)	0.00069 (7)	0.30260 (3)	0.01306 (17)
Se6	0.72631 (7)	0.01489 (7)	0.46832 (3)	0.01402 (17)
Se7	0.95299 (7)	0.67889 (7)	0.29407 (3)	0.01363 (17)
Se8	0.06604 (7)	0.01348 (7)	0.37121 (3)	0.01835 (18)
Se9	0.61132 (7)	0.68152 (7)	0.23270 (3)	0.01788 (18)
Se10	0.62389 (7)	0.69187 (7)	0.55318 (3)	0.01533 (17)
K1	0.84052 (16)	0.61928 (16)	0.65528 (7)	0.0223 (4)

K2	0.43100 (16)	0.99728 (15)	0.39359 (7)	0.0163 (3)
K3	0.31801 (17)	0.62238 (16)	0.50104 (7)	0.0221 (4)
K4	0.67980 (19)	0.35486 (18)	0.26208 (8)	0.0288 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ge1	0.0119 (4)	0.0106 (3)	0.0157 (4)	0.0012 (3)	-0.0064 (3)	-0.0001 (3)
Ge2	0.0138 (4)	0.0092 (3)	0.0098 (4)	0.0003 (3)	-0.0052 (3)	0.0017 (3)
Ge3	0.0121 (3)	0.0108 (3)	0.0090 (4)	0.0009 (3)	-0.0063 (3)	-0.0009 (3)
Ge4	0.0156 (4)	0.0089 (3)	0.0095 (4)	0.0005 (3)	-0.0049 (3)	0.0021 (3)
Se1	0.0125 (3)	0.0121 (3)	0.0126 (4)	-0.0010 (3)	-0.0044 (3)	0.0010 (3)
Se2	0.0167 (4)	0.0141 (3)	0.0159 (4)	0.0015 (3)	-0.0083 (3)	0.0043 (3)
Se3	0.0112 (3)	0.0153 (3)	0.0232 (4)	0.0008 (3)	-0.0072 (3)	-0.0019 (3)
Se4	0.0232 (4)	0.0098 (3)	0.0133 (4)	-0.0009 (3)	-0.0058 (3)	0.0013 (3)
Se5	0.0165 (4)	0.0111 (3)	0.0105 (3)	0.0018 (3)	-0.0065 (3)	0.0016 (3)
Se6	0.0233 (4)	0.0092 (3)	0.0092 (3)	0.0015 (3)	-0.0013 (3)	0.0009 (3)
Se7	0.0133 (3)	0.0132 (3)	0.0136 (4)	0.0016 (3)	-0.0038 (3)	-0.0020 (3)
Se8	0.0141 (4)	0.0122 (3)	0.0275 (4)	-0.0011 (3)	-0.0063 (3)	0.0022 (3)
Se9	0.0203 (4)	0.0177 (4)	0.0137 (4)	0.0009 (3)	-0.0113 (3)	-0.0038 (3)
Se10	0.0239 (4)	0.0116 (3)	0.0101 (3)	-0.0014 (3)	-0.0017 (3)	0.0020 (3)
K1	0.0240 (8)	0.0184 (8)	0.0233 (9)	-0.0021 (7)	-0.0057 (7)	-0.0017 (7)
K2	0.0188 (8)	0.0150 (7)	0.0143 (8)	-0.0010 (6)	-0.0045 (6)	-0.0027 (6)
K3	0.0275 (9)	0.0182 (8)	0.0196 (8)	0.0035 (7)	-0.0052 (7)	-0.0052 (7)
K4	0.0406 (11)	0.0204 (8)	0.0220 (9)	-0.0030(7)	-0.0190 (8)	0.0049 (7)

Geometric parameters (Å, °)

Ge1—Se7 ⁱ	2.2492 (10)	Se8—K1 ^v	3.7468 (18)
Ge1—Se3	2.3105 (10)	Se9—K4	3.3027 (19)
Ge1—Se8 ⁱⁱ	2.3583 (10)	Se9—K4 ^{vi}	3.368 (2)
Ge1—Se2 ⁱ	2.4943 (11)	Se9—K2 ^x	3.4284 (17)
Ge2—Se5	2.2366 (9)	Se9—K1 ^{iv}	3.5827 (19)
Ge2—Se4	2.2613 (9)	Se10—K1	3.1574 (17)
Ge2—Se8 ⁱⁱⁱ	2.3769 (10)	Se10—K3	3.2640 (18)
Ge2—Se6	2.5384 (10)	Se10—K2 ^{xi}	3.3211 (17)
Ge3—Se9	2.1288 (9)	Se10—K3 ^v	3.3663 (17)
Ge3—Se5 ⁱⁱ	2.3795 (10)	K1—Se3 ^v	3.3341 (17)
Ge3—Se7	2.4092 (10)	K1—Se4 ^{vii}	3.3929 (19)
Ge3—Se1	2.5131 (10)	K1—Se9 ^{xii}	3.5827 (19)
Ge3—K1 ^{iv}	3.9678 (19)	K1—Se7 ^{vii}	3.6904 (17)
Ge4—Se1	2.2335 (9)	K1—Se8 ^v	3.7468 (18)
Ge4—Se6 ⁱⁱ	2.3735 (9)	K1—Se7 ^{xii}	3.8577 (17)
Ge4—Se2	2.3755 (10)	K1—Se5 ^{xiii}	3.8882 (19)
Ge4—Se10	2.4238 (10)	K1—Ge3 ^{xii}	3.9678 (19)
Ge4—K3 ^v	3.9173 (18)	K1—K3 ^v	4.499 (2)

Se1—K2	3.6314 (16)	K1—K2 ^{xi}	4.689 (2)
Se1—K3 ^v	3.7879 (18)	K1—K4 ^{vii}	5.021 (2)
Se2—Ge1 ⁱⁱⁱ	2.4943 (11)	K2—Se6 ⁱⁱ	3.3035 (16)
Se2—K3 ⁱⁱⁱ	3.6537 (18)	K2—Se10 ^{xi}	3.3211 (17)
Se3—K3	3.2317 (18)	K2—Se9 ^{vi}	3.4284 (17)
Se3—K2	3.3133 (16)	K2—Se8 ⁱⁱ	3.6418 (17)
Se3—K1 ^v	3.3341 (17)	K2—Se6 ^v	3.6768 (18)
Se3—K4 ^{vi}	3.374 (2)	K2—Se5 ⁱⁱ	3.7034 (18)
Se4—K4	2.9859 (17)	K2—K4 ^{vi}	3.941 (2)
Se4—K1 ^{vii}	3.3929 (19)	K2—K3	4.600 (2)
Se4—K3 ^v	3.4028 (19)	K2—K1 ^{xi}	4.689 (2)
Se5—Ge3 ^{viii}	2.3795 (10)	K2—K3 ^{xi}	4.990 (2)
Se5—K4	3.5773 (18)	K3—Se10 ^v	3.3663 (17)
Se5—K2 ^{viii}	3.7034 (18)	K3—Se4 ^v	3.4028 (19)
Se5—K1 ^{ix}	3.8882 (19)	K3—Se6 ^v	3.6252 (17)
Se6—Ge4 ^{viii}	2.3735 (9)	K3—Se2 ⁱ	3.6537 (18)
Se6—K2 ^{viii}	3.3035 (16)	K3—Se1 ^v	3.7879 (18)
Se6—K3 ^v	3.6252 (17)	K3—Ge4 ^v	3.9173 (18)
Se6—K2 ^v	3.6768 (18)	K3—K3 ^v	4.344 (3)
Se7—Ge1 ⁱⁱⁱ	2.2492 (10)	K3—K1 ^v	4.499 (2)
Se7—K1 ^{vii}	3.6904 (17)	K3—K2 ^{xi}	4.990 (2)
Se7—K1 ^{iv}	3.8577 (17)	K4—Se9 ^x	3.368 (2)
Se8—Ge1 ^{viii}	2.3583 (10)	K4—Se3 ^x	3.374 (2)
Se8—Ge2 ⁱ	2.3769 (10)	K4—K2 ^x	3.941 (2)
Se8—K2 ^{viii}	3.6418 (17)	K4—K1 ^{vii}	5.021 (2)
Se7 ⁱ —Ge1—Se3	100.24 (4)	Se10—K1—K4 ^{vii}	148.33 (6)
Se7 ⁱ —Ge1—Se8 ⁱⁱ	112.61 (4)	Se3 ^v —K1—K4 ^{vii}	114.13 (4)
Se3—Ge1—Se8 ⁱⁱ	104.32 (4)	Se4 ^{vii} —K1—K4 ^{vii}	35.31 (3)
Se7 ⁱ —Ge1—Se2 ⁱ	113.08 (4)	Se9 ^{xii} —K1—K4 ^{vii}	114.14 (4)
Se3—Ge1—Se2 ⁱ	114.21 (4)	Se7 ^{vii} —K1—K4 ^{vii}	54.97 (3)
Se8 ⁱⁱ —Ge1—Se2 ⁱ	111.60 (4)	Se8 ^v —K1—K4 ^{vii}	76.87 (3)
Se5—Ge2—Se4	110.10 (4)	Se7 ^{xii} —K1—K4 ^{vii}	56.64 (3)
Se5—Ge2—Se8 ⁱⁱⁱ	106.21 (4)	Se5 ^{xiii} —K1—K4 ^{vii}	91.81 (4)
Se4—Ge2—Se8 ⁱⁱⁱ	108.04 (4)	Ge3 ^{xii} —K1—K4 ^{vii}	88.53 (4)
Se5—Ge2—Se6	106.89 (4)	K3 ^v —K1—K4 ^{vii}	126.72 (5)
Se4—Ge2—Se6	107.47 (4)	K2 ^{xi} —K1—K4 ^{vii}	124.61 (4)
Se8 ⁱⁱⁱ —Ge2—Se6	118.02 (4)	Se6 ⁱⁱ —K2—Se3	122.37 (5)
Se9—Ge3—Se5 ⁱⁱ	106.77 (4)	Se6 ⁱⁱ —K2—Se10 ^{xi}	85.67 (4)
Se9—Ge3—Se7	104.41 (4)	Se3—K2—Se10 ^{xi}	140.62 (6)
Se5 ⁱⁱ —Ge3—Se7	109.42 (4)	Se6 ⁱⁱ —K2—Se9 ^{vi}	117.77 (5)

Se9—Ge3—Se1	108.11 (4)	Se3—K2—Se9 ^{vi}	105.06 (4)
Se5 ⁱⁱ —Ge3—Se1	109.06 (4)	Se10 ^{xi} —K2—Se9 ^{vi}	80.26 (4)
Se7—Ge3—Se1	118.41 (3)	Se6 ⁱⁱ —K2—Se1	66.48 (3)
Se9—Ge3—K1 ^{iv}	63.87 (4)	Se3—K2—Se1	59.48 (3)
Se5 ⁱⁱ —Ge3—K1 ^{iv}	70.55 (3)	Se10 ^{xi} —K2—Se1	151.02 (5)
Se7—Ge3—K1 ^{iv}	69.59 (3)	Se9 ^{vi} —K2—Se1	119.03 (5)
Se1—Ge3—K1 ^{iv}	170.69 (4)	Se6 ⁱⁱ —K2—Se8 ⁱⁱ	155.99 (5)
Se1—Ge4—Se6 ⁱⁱ	111.61 (4)	Se3—K2—Se8 ⁱⁱ	63.83 (3)
Se1—Ge4—Se2	105.31 (4)	Se10 ^{xi} —K2—Se8 ⁱⁱ	79.71 (4)
Se6 ⁱⁱ —Ge4—Se2	112.11 (4)	Se9 ^{vi} —K2—Se8 ⁱⁱ	78.53 (3)
Se1—Ge4—Se10	103.52 (4)	Se1—K2—Se8 ⁱⁱ	123.18 (4)
Se6 ⁱⁱ —Ge4—Se10	107.97 (4)	Se6 ⁱⁱ —K2—Se6 ^v	88.25 (4)
Se2—Ge4—Se10	116.00 (4)	Se3—K2—Se6 ^v	85.24 (4)
Se1—Ge4—K3 ^v	70.00 (3)	Se10 ^{xi} —K2—Se6 ^v	67.14 (3)
Se6 ⁱⁱ —Ge4—K3 ^v	165.69 (4)	Se9 ^{vi} —K2—Se6 ^v	136.72 (5)
Se2—Ge4—K3 ^v	80.24 (3)	Se1—K2—Se6 ^v	102.59 (4)
Se10—Ge4—K3 ^v	58.62 (3)	Se8 ⁱⁱ —K2—Se6 ^v	68.58 (3)
Ge4—Se1—Ge3	105.83 (4)	Se6 ⁱⁱ —K2—Se5 ⁱⁱ	66.18 (3)
Ge4—Se1—K2	84.27 (3)	Se3—K2—Se5 ⁱⁱ	105.73 (4)
Ge3—Se1—K2	89.12 (3)	Se10 ^{xi} —K2—Se5 ⁱⁱ	111.23 (4)
Ge4—Se1—K3 ^v	76.36 (3)	Se9 ^{vi} —K2—Se5 ⁱⁱ	63.77 (3)
Ge3—Se1—K3 ^v	133.58 (4)	Se1—K2—Se5 ⁱⁱ	65.82 (3)
K2—Se1—K3 ^v	136.35 (4)	Se8 ⁱⁱ —K2—Se5 ⁱⁱ	137.13 (5)
Ge4—Se2—Ge1 ⁱⁱⁱ	111.12 (3)	Se6 ^v —K2—Se5 ⁱⁱ	154.29 (5)
Ge4—Se2—K3 ⁱⁱⁱ	161.33 (4)	Se6 ⁱⁱ —K2—K4 ^{vi}	132.29 (6)
Ge1 ⁱⁱⁱ —Se2—K3 ⁱⁱⁱ	79.56 (4)	Se3—K2—K4 ^{vi}	54.62 (4)
Ge1—Se3—K3	91.87 (4)	Se10 ^{xi} —K2—K4 ^{vi}	128.04 (5)
Ge1—Se3—K2	99.19 (4)	Se9 ^{vi} —K2—K4 ^{vi}	52.69 (4)
K3—Se3—K2	89.29 (4)	Se1—K2—K4 ^{vi}	79.42 (4)
Ge1—Se3—K1 ^v	88.32 (4)	Se8 ⁱⁱ —K2—K4 ^{vi}	71.29 (4)
K3—Se3—K1 ^v	86.48 (4)	Se6 ^v —K2—K4 ^{vi}	132.68 (5)
K2—Se3—K1 ^v	171.51 (4)	Se5 ⁱⁱ —K2—K4 ^{vi}	69.90 (4)
Ge1—Se3—K4 ^{vi}	98.40 (4)	Se6 ⁱⁱ —K2—K3	90.20 (4)
K3—Se3—K4 ^{vi}	160.00 (5)	Se3—K2—K3	44.63 (3)
K2—Se3—K4 ^{vi}	72.21 (4)	Se10 ^{xi} —K2—K3	117.56 (5)
K1 ^v —Se3—K4 ^{vi}	110.82 (5)	Se9 ^{vi} —K2—K3	148.88 (5)
Ge2—Se4—K4	98.50 (4)	Se1—K2—K3	57.59 (3)
Ge2—Se4—K1 ^{vii}	99.76 (4)	Se8 ⁱⁱ —K2—K3	80.00 (4)
K4—Se4—K1 ^{vii}	103.65 (5)	Se6 ^v —K2—K3	50.46 (3)
Ge2—Se4—K3 ^v	98.03 (4)	Se5 ⁱⁱ —K2—K3	123.40 (4)
K4—Se4—K 3^{v}	118.50 (5)	K4 ^{vi} —K2—K3	98.95 (5)

K1 ^{vii} —Se4—K3 ^v	130.79 (4)	Se6 ⁱⁱ —K2—K1 ^{xi}	124.08 (4)
Ge2—Se5—Ge3 ^{viii}	109.10 (3)	Se3—K2—K1 ^{xi}	112.76 (4)
Ge2—Se5—K4	83.63 (4)	Se10 ^{xi} —K2—K1 ^{xi}	42.26 (3)
Ge3 ^{viii} —Se5—K4	166.82 (4)	Se9 ^{vi} —K2—K1 ^{xi}	49.44 (3)
Ge2—Se5—K2 ^{viii}	87.00 (4)	Se1—K2—K1 ^{xi}	166.05 (5)
Ge3 ^{viii} —Se5—K2 ^{viii}	89.49 (3)	Se8 ⁱⁱ —K2—K1 ^{xi}	51.60 (3)
K4—Se5—K2 ^{viii}	94.72 (4)	Se6 ^v —K2—K1 ^{xi}	87.58 (4)
Ge2—Se5—K1 ^{ix}	128.71 (4)	Se5 ⁱⁱ —K2—K1 ^{xi}	108.43 (4)
Ge3 ^{viii} —Se5—K1 ^{ix}	74.21 (3)	K4 ^{vi} —K2—K1 ^{xi}	86.66 (4)
K4—Se5—K1 ^{ix}	95.33 (4)	K3—K2—K1 ^{xi}	126.65 (5)
K2 ^{viii} —Se5—K1 ^{ix}	143.75 (4)	Se6 ⁱⁱ —K2—K3 ^{xi}	46.55 (3)
Ge4 ^{viii} —Se6—Ge2	105.79 (3)	Se3—K2—K3 ^{xi}	161.67 (5)
Ge4 ^{viii} —Se6—K2 ^{viii}	90.04 (4)	Se10 ^{xi} —K2—K3 ^{xi}	40.30 (3)
Ge2—Se6—K2 ^{viii}	91.69 (4)	Se9 ^{vi} —K2—K3 ^{xi}	93.19 (4)
Ge4 ^{viii} —Se6—K3 ^v	166.30 (4)	Se1—K2—K3 ^{xi}	112.99 (4)
Ge2—Se6—K3 ^v	87.68 (4)	Se8 ⁱⁱ —K2—K3 ^{xi}	119.72 (4)
K2 ^{viii} —Se6—K3 ^v	92.03 (4)	Se6 ^v —K2—K3 ^{xi}	80.20 (4)
Ge4 ^{viii} —Se6—K2 ^v	88.32 (3)	Se5 ⁱⁱ —K2—K3 ^{xi}	83.63 (4)
Ge2—Se6—K2 ^v	165.46 (4)	K4 ^{vi} —K2—K3 ^{xi}	143.28 (5)
K2 ^{viii} —Se6—K2 ^v	91.75 (4)	K3—K2—K3 ^{xi}	117.06 (4)
K3 ^v —Se6—K2 ^v	78.09 (4)	K1 ^{xi} —K2—K3 ^{xi}	77.86 (3)
Ge1 ⁱⁱⁱ —Se7—Ge3	98.20 (4)	Se3—K3—Se10	111.20 (6)
Ge1 ⁱⁱⁱ —Se7—K1 ^{vii}	80.73 (4)	Se3—K3—Se10 ^v	82.19 (4)
Ge3—Se7—K1 ^{vii}	134.92 (4)	Se10—K3—Se10 ^v	98.16 (5)
Ge1 ⁱⁱⁱ —Se7—K1 ^{iv}	125.24 (4)	Se3—K3—Se4 ^v	137.92 (6)
Ge3—Se7—K1 ^{iv}	74.58 (3)	Se10—K3—Se4 ^v	97.61 (4)
K1 ^{vii} —Se7—K1 ^{iv}	141.46 (3)	Se10 ^v —K3—Se4 ^v	124.39 (5)
Ge1 ^{viii} —Se8—Ge2 ⁱ	104.85 (4)	Se3—K3—Se6 ^v	87.29 (4)
Ge1 ^{viii} —Se8—K2 ^{viii}	89.79 (3)	Se10—K3—Se6 ^v	81.47 (4)
Ge2 ⁱ —Se8—K2 ^{viii}	160.28 (4)	Se10 ^v —K3—Se6 ^v	168.57 (6)
Ge1 ^{viii} —Se8—K1 ^v	165.28 (5)	Se4 ^v —K3—Se6 ^v	66.81 (3)
Ge2 ⁱ —Se8—K1 ^v	88.51 (4)	Se3—K3—Se2 ⁱ	71.47 (4)
K2 ^{viii} —Se8—K1 ^v	78.78 (4)	Se10—K3—Se2 ⁱ	156.24 (5)
Ge3—Se9—K4	93.85 (4)	Se10 ^v —K3—Se2 ⁱ	105.56 (4)
Ge3—Se9—K4 ^{vi}	102.68 (4)	Se4 ^v —K3—Se2 ⁱ	70.12 (4)
K4—Se9—K4 ^{vi}	129.58 (4)	Se6 ^v —K3—Se2 ⁱ	75.01 (3)
Ge3—Se9—K2 ^x	153.05 (4)	Se3—K3—Se1 ^v	143.22 (5)
K4—Se9—K2 ^x	71.65 (4)	Se10—K3—Se1 ^v	79.53 (4)
$K4^{vi}$ —Se9— $K2^{x}$	104.03 (4)	Se10 ^v —K3—Se1 ^v	61.20 (3)
Ge3—Se9—K1 ^{iv}	83.89 (4)	Se4 ^v —K3—Se1 ^v	69.98 (4)
K4—Se9—K1 ^{iv}	119.43 (5)	Se6 ^v —K3—Se1 ^v	129.49 (5)

K4 ^{vi} —Se9—K1 ^{iv}	109.57 (5)	Se2 ⁱ —K3—Se1 ^v	113.06 (5)
K2 ^x —Se9—K1 ^{iv}	83.93 (4)	Se3—K3—Ge4 ^v	112.46 (5)
Ge4—Se10—K1	108.99 (5)	Se10—K3—Ge4 ^v	106.30 (4)
Ge4—Se10—K3	104.87 (4)	Se10 ^v —K3—Ge4 ^v	37.93 (2)
K1—Se10—K3	142.83 (5)	Se4 ^v —K3—Ge4 ^v	86.46 (4)
Ge4—Se10—K2 ^{xi}	96.19 (4)	Se6 ^v —K3—Ge4 ^v	153.08 (6)
K1—Se10—K2 ^{xi}	92.71 (4)	Se2 ⁱ —K3—Ge4 ^v	93.50 (4)
K3—Se10—K2 ^{xi}	98.54 (4)	Se1 ^v —K3—Ge4 ^v	33.65 (2)
Ge4—Se10—K3 ^v	83.45 (4)	Se3—K3—K3 ^v	99.58 (6)
K1—Se10—K3 ^v	87.13 (4)	Se10—K3—K3 ^v	50.10 (4)
K3—Se10—K3 ^v	81.84 (5)	$Se10^{v}$ —K3—K3 ^v	48.06 (3)
K2 ^{xi} —Se10—K3 ^v	179.54 (5)	Se4 ^v —K3—K3 ^v	122.49 (6)
Se10—K1—Se3 ^v	83.82 (4)	Se6 ^v —K3—K3 ^v	130.41 (6)
Se10—K1—Se4 ^{vii}	113.87 (5)	Se2 ⁱ —K3—K3 ^v	153.60 (7)
Se3 ^v —K1—Se4 ^{vii}	116.80 (5)	Se1 ^v —K3—K3 ^v	59.34 (4)
Se10—K1—Se9 ^{xii}	80.14 (4)	Ge4 ^v —K3—K3 ^v	66.40 (4)
Se3 ^v —K1—Se9 ^{xii}	110.40 (5)	Se3—K3—K1 ^v	47.71 (3)
Se4 ^{vii} —K1—Se9 ^{xii}	131.67 (5)	Se10—K3—K1 ^v	131.72 (5)
Se10—K1—Se7 ^{vii}	138.23 (5)	$Se10^{v}$ —K3—K1 ^v	44.51 (3)
Se3 ^v —K1—Se7 ^{vii}	59.50 (3)	$Se4^{v}$ —K3—K1 ^v	127.26 (5)
Se4 ^{vii} —K1—Se7 ^{vii}	71.92 (4)	Se6 ^v —K3—K1 ^v	128.57 (5)
Se9 ^{xii} —K1—Se7 ^{vii}	128.77 (5)	$Se2^{i}$ —K3—K1 ^v	68.47 (4)
Se10—K1—Se8 ^v	80.18 (4)	$Se1^v - K3 - K1^v$	98.21 (4)
Se3 ^v —K1—Se8 ^v	161.84 (6)	$Ge4^{v}$ —K3—K1 ^v	65.24 (3)
Se4 ^{vii} —K1—Se8 ^v	63.21 (3)	$K3^{v}$ — $K3$ — $K1^{v}$	86.98 (5)
Se9 ^{xii} —K1—Se8 ^v	75.27 (4)	Se3—K3—K2	46.08 (3)
Se7 ^{vii} —K1—Se8 ^v	131.15 (5)	Se10—K3—K2	77.01 (4)
Se10—K1—Se7 ^{xii}	130.48 (5)	Se10 ^v —K3—K2	117.23 (5)
Se3 ^v —K1—Se7 ^{xii}	131.87 (5)	Se4 ^v —K3—K2	118.23 (5)
Se4 ^{vii} —K1—Se7 ^{xii}	82.65 (4)	Se6 ^v —K3—K2	51.46 (3)
Se9 ^{xii} —K1—Se7 ^{xii}	57.56 (3)	Se2 ⁱ —K3—K2	90.73 (4)
Se7 ^{vii} —K1—Se7 ^{xii}	90.81 (4)	Sel ^v —K3—K2	155.97 (5)
Se8 ^v —K1—Se7 ^{xii}	66.04 (3)	Ge4 ^v —K3—K2	154.80 (5)
Se10—K1—Se5 ^{xiii}	118.96 (5)	K3 ^v —K3—K2	100.70 (6)
Se3 ^v —K1—Se5 ^{xiii}	73.76 (4)	K1 ^v —K3—K2	93.54 (4)
Se4 ^{vii} —K1—Se5 ^{xiii}	127.01 (5)	Se3—K3—K2 ^{xi}	109.01 (5)
Se9 ^{xii} —K1—Se5 ^{xiii}	57.82 (3)	Se10—K3—K2 ^{xi}	41.16 (3)
Se7 ^{vii} —K1—Se5 ^{xiii}	71.91 (3)	Se10 ^v —K3—K2 ^{xi}	139.32 (5)
Se8 ^v —K1—Se5 ^{xiii}	121.81 (5)	Se4 ^v —K3—K2 ^{xi}	73.39 (4)
Se7 ^{xii} —K1—Se5 ^{xiii}	60.61 (3)	Se6 ^v —K3—K2 ^{xi}	41.42 (3)
Se10—K1—Ge3 ^{xii}	111.83 (5)	Se2 ⁱ —K3—K2 ^{xi}	115.10 (4)

Se3 ^v —K1—Ge3 ^{xii}	107.08 (5)	Se1 ^v —K3—K2 ^{xi}	101.72 (4)
Se4 ^{vii} —K1—Ge3 ^{xii}	118.34 (4)	Ge4 ^v —K3—K2 ^{xi}	135.32 (4)
Se9 ^{xii} —K1—Ge3 ^{xii}	32.24 (2)	K3 ^v —K3—K2 ^{xi}	91.26 (5)
Se7 ^{vii} —K1—Ge3 ^{xii}	98.47 (4)	K1 ^v —K3—K2 ^{xi}	155.67 (5)
Se8 ^v —K1—Ge3 ^{xii}	86.93 (4)	K2—K3—K2 ^{xi}	62.94 (4)
Se7 ^{xii} —K1—Ge3 ^{xii}	35.83 (2)	Se4—K4—Se9	112.11 (5)
Se5 ^{xiii} —K1—Ge3 ^{xii}	35.24 (2)	Se4—K4—Se9 ^x	108.09 (6)
Se10—K1—K3 ^v	48.36 (3)	Se9—K4—Se9 ^x	108.77 (5)
Se3 ^v —K1—K3 ^v	45.81 (3)	Se4—K4—Se3 ^x	128.74 (6)
Se4 ^{vii} —K1—K3 ^v	101.35 (5)	Se9—K4—Se3 ^x	106.52 (5)
Se9 ^{xii} —K1—K3 ^v	119.14 (5)	Se9 ^x —K4—Se3 ^x	89.23 (4)
Se7 ^{vii} —K1—K3 ^v	89.99 (4)	Se4—K4—Se5	67.66 (4)
Se8 ^v —K1—K3 ^v	116.11 (5)	Se9—K4—Se5	173.44 (7)
Se7 ^{xii} —K1—K3 ^v	175.97 (5)	Se9 ^x —K4—Se5	65.76 (4)
Se5 ^{xiii} —K1—K3 ^v	115.98 (5)	Se3 ^x —K4—Se5	77.56 (4)
Ge3 ^{xii} —K1—K3 ^v	140.14 (5)	Se4—K4—K2 ^x	159.96 (7)
Se10—K1—K2 ^{xi}	45.02 (3)	Se9—K4—K2 ^x	55.66 (4)
Se3 ^v —K1—K2 ^{xi}	121.25 (5)	Se9 ^x —K4—K2 ^x	91.57 (4)
Se4 ^{vii} —K1—K2 ^{xi}	110.45 (5)	$Se3^{x}$ —K4—K2 ^x	53.18 (4)
Se9 ^{xii} —K1—K2 ^{xi}	46.64 (3)	Se5—K4—K2 ^x	126.51 (5)
Se7 ^{vii} —K1—K2 ^{xi}	175.36 (5)	Se4—K4—K1 ^{vii}	41.05 (3)
Se8 ^v —K1—K2 ^{xi}	49.62 (3)	Se9—K4—K1 ^{vii}	101.91 (4)
Se7 ^{xii} —K1—K2 ^{xi}	85.61 (4)	Se9 ^x —K4—K1 ^{vii}	144.16 (5)
Se5 ^{xiii} —K1—K2 ^{xi}	103.70 (4)	Se3 ^x —K4—K1 ^{vii}	99.56 (5)
Ge3 ^{xii} —K1—K2 ^{xi}	76.90 (4)	Se5—K4—K1 ^{vii}	82.21 (4)
K3 ^v —K1—K2 ^{xi}	93.39 (4)	$K2^{x}$ — $K4$ — $K1^{vii}$	121.49 (5)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*+1, *z*; (iii) *x*+1, *y*, *z*; (iv) *x*, -*y*+3/2, *z*-1/2; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*+1, *y*+1/2, -*z*+1/2; (vii) -*x*+2, -*y*+1, -*z*+1; (viii) *x*, *y*-1, *z*; (ix) *x*, -*y*+1/2, *z*-1/2; (x) -*x*+1, *y*-1/2, -*z*+1/2; (xi) -*x*+1, -*y*+2, -*z*+1; (xii) *x*, -*y*+3/2, *z*+1/2; (xiii) *x*, -*y*+1/2, *z*+1/2.

